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Mean and Variance Updates in the Gaussian Approximation (This derives the mean and vari-
ance updates given in Equations 2 and 3 in the main paper. It makes use of the Gaussian integrals
from Figure 2 in the paper.)

The update to the mean is obtained by computing the expected value for the updated distribution
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Thus, we find that
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To compute the update to the variance, we first compute the second moment,
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Since 07, | = E[V?] — u7,,, we finally arrive at
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Proof of Monotonicity of State Update The proof below is for Theorem 2.1 in the main paper:
Lemma 0.1. Forall x <y, (®(y) — ®(x))(yN(y) —zN(z)) + (N(z) — N(y))? > 0.

Proof. If x < 0, the claim is obvious, so assume that > 0. We begin with the following inequality,

z(®(y) — @(z)) < /y ds sN(s) < y(®(y) — (x)).



Since [” ds sN(s) = N(x) — N(y), we have the following inequality, which establishes the result,

yN(y)(2(y) — &(2)) — 2N (2)(2(y) — (x)) > N(y)(N(z) = N(y)) = N(z)(N(z) = N(y))
|

Theorem 0.1 (Monotonic state update). o7,; < o7.

Proof. It suffices to show that AC' + B? > 0. Define s> = 07 + 02, At = (2* — 1)/s and

A~ = (z7 — p)/s. After some algebraic manipulation, we find that
A = oat)- oA,
B = Z(N(AT)-N(A)),
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Thus, AC + B? is given by
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where x = A~, y = AT. Applying Lemma 0.1 concludes the proof. ]



